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A Computational Framework for Uncertainty
Quantification and Stochastic Optimization in Unit

Commitment with Wind Power Generation
Emil M. Constantinescu, Victor M. Zavala,

Matthew Rocklin, Sangmin Lee, and Mihai Anitescu

Abstract—We present a computational framework for integrat-
ing a state-of-the-art numerical weather prediction (NWP)model
in stochastic unit commitment/energy dispatch formulations that
account for wind power uncertainty. We first enhance the NWP
model with an ensemble-based uncertainty quantification strat-
egy implemented in a distributed-memory parallel computing
architecture. We use these capabilities through an ensemble
approach to model the uncertainty of the forecast errors. The
wind power realizations are exploited through a closed-loop
stochastic unit commitment/energy dispatch formulation. We
discuss computational issues arising in the implementation of the
framework. In addition, we validate the framework using real
wind speed data obtained from a set of meteorological stations.
We also build a simulated power system to demonstrate the
developments.

Index Terms—weather forecasting, wind, unit commitment,
energy dispatch, closed-loop.

I. I NTRODUCTION

Wind power is becoming worldwide a significant component
of the power generation portfolio. In Europe, several countries
already exhibit adoption levels in the range of 5-20% of
the total annual demand. In the U.S. an adoption level of
20% is expected by the year 2030 [1]. Such a large-scale
adoption resents many challenges to the operation of the
electrical power grid because wind power is highly intermittent
and difficult to predict. In particular, unit commitment (UC)
and energy dispatch (ED) operations are of great importance
because of their strong economic impact (on the order of
billions of dollars per year) and increasing emissions concerns.

Several UC studies analyzing the impact of increasing
adoption levels of wind power have been performed recently.
In [20], a security-constrained stochastic UC formulation
that accounts for wind power volatility is presented together
with an efficient Benders decomposition solution technique.
However, the issue of constructing probability distributions
for the wind power is not addressed. In [18], a detailed
closed-loop stochastic UC formulation is reported. The authors
analyze the impact of the frequency of recommitment on
the production, startup, and shutdown costs. They find that
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increasing the recommitment frequency can reduce costs and
increase the reliability of the system. However, the authors
do not present details on the wind power forecast model and
uncertainty information used to support their conclusions. In
[10], [13], artificial neural network (ANN) models are used
to compute forecasts and confidence intervals for the total
aggregated power for a set of distributed wind generators. The
authors observed that forecasting the aggregated power tends
to reduce the overall forecast error because it smoothes out
local individual variations. A problem with empirical modeling
approaches, however, is that their predictive capabilities rely
strongly on the presence of persistent trends. In addition,they
neglect the presence of spatio-temporal physical phenomena
that can lead to time-varying correlations of the wind speeds
at neighboring locations. Such approaches can thus result in
inaccurate medium and long-term forecasts and over- or under-
estimated uncertainty levels [12], [7], which in turn affect the
expected cost and robustness of the UC solution.

In this work, we seek to exploit recent advances in nu-
merical weather prediction (NWP) models to perform UC/EP
studies with wind power adoption. The use of physical mod-
els is desirable because consistent and accurate uncertainty
information can be obtained [11]. As an example, consider
the missing effects of turbulence during night time, which
would allow one to obtain much tighter uncertainty intervals
and lower operating costs. These physical effects cannot be
captured adequately through empirical modeling techniques
[5]. On the other hand, the practical capabilities of NWP
models are also limited. One of the major limiting factors is
their computational complexity. For instance, performingdata
assimilation every hour at a high spatial resolution is currently
not practical. In addition, extracting uncertainty information
from NWP models becomes quickly intractable both from the
point of view of simulation time and memory requirements.
To give a reference, a single forecast run for a day ahead with
a resolution of about2 km2 for an area that covers most of the
US state of Illinois takes about 50 hours and produces around
50 GB of data. The question is:From an operational point of
view, how suitable are the forecasting capabilities of state-of-
the-art NWP models?This is an important question because
NWP models are expected to be used to make real-time
operational decisions with important economic implications.
To analyze this issue, we present a computational framework
that integrates the Weather Research and Forecast (WRF)
model with a closed-loop stochastic UC/EP formulation. In
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particular, we are interested in analyzing computational issues
and to analyze the effects of wind uncertainty on UC/ED
operations.

We focus our attention on wind speed forecasting with
WRF. Arguably, more sophisticated hybrid methods that com-
bine both NWP wind speed forecasts and empirical models
are needed to map the resolution of NWP forecasts down to a
specific domain and to account for system-specific characteris-
tics (e.g., power curves, orography) [11]. Unfortunately,most
real-time power data of operational wind farms is confidential,
so it is complicated to validate wind power models. We model
the uncertainty of the wind speed forecasts using a sampling
technique that generates an ensemble of the future realiza-
tions in the targeted geographical region. The ensembles are
obtained by using a scalable implementation on a distributed-
memory parallel computing. The generated ensembles are sent
to a stochastic UC/EP optimization problem. We validate the
forecast information using real wind speed data obtained from
a set of meteorological stations located in Illinois. We use
this forecast information to perform an economic analysis of
the impact of increasing adoption levels of wind power on a
simulated power generation system.

The paper is structured as follows. Section II presents details
about the WRF model and uncertainty quantification. Section
III describes the stochastic unit commitment formulation and
a resampling technique used to perform inference analysis.
Section IV presents numerical validation results for WRF and
the closed-loop UC simulations results. We close with final
remarks and directions for future work.

II. W IND FORECAST ANDUNCERTAINTY ESTIMATION

USING WRF

In this section, we describe the procedures used to forecast
the wind speed using WRF. The uncertainty in the wind speed
is estimated by using an ensemble approach. We describe
in detail the ensemble initialization and restarting procedures
required in an operational framework.

A. Numerical Weather Prediction

The Weather Research and Forecasting model [17] is a state-
of-the-art numerical weather prediction system designed to
serve both operational forecasting and atmospheric research
needs. WRF is the result of a multi-agency and university
effort to build a highly parallelizable code that can run across
scales ranging from large-eddy to global simulations. WRF
has a comprehensive description of the atmospheric physics
that includes cloud parameterization, land-surface models,
atmosphere-ocean coupling, and broad radiation models. The
terrain resolution can go up to 30 seconds of a degree, which
corresponds to less than1 km2.

To initialize the numerical weather prediction simulations,
we use reanalyzed fields. In particular, we use the North
American Regional Reanalysis (NARR) data set that covers
the North American continent (160W-20W; 10N-80N) with a
resolution of 10 minutes of a degree, 29 pressure levels (1000-
100 hPa, excluding the surface) every three hours from 1979
until present.

B. Uncertainty Estimation in Wind Prediction

We use an ensemble of realizations to represent uncertainty
in the initial (random) wind field and propagate it through the
WRF nonlinear model. The initial ensemble is obtained by
sampling from an empirical distribution, a procedure similar
to the NCEP method introduced by Parrish and Derber [14],
[8]. In the following sections we describe in more detail
the procedures needed for generating the forecast and its
uncertainty. We introduced a similar approach in [21].

1) Ensemble Initialization:In a normal operational mode,
the NWP system evolves a given state from an initial time
t0, to a final time tF . The initial state is produced from
past simulations and reanalysis fields, that is, simulated at-
mospheric states reconciled with real observations. Because
of the observation sparseness in the atmospheric field and
the incomplete numerical representation of the atmosphere
dynamics, the initial states are not known exactly and can be
correctly represented only in a statistical sense. Therefore, we
use an ensemble of initial conditions to describe the confidence
in the knowledge of the initial state of the atmosphere.

The ensemble of the initial states is centered on the NARR
field at the initial time, the most accurate information available
of the atmospheric state. In other words, the ensemble expec-
tation is exactly the NARR solution. The second statistical
moment of the ensemble described by the covariance matrix
V is approximated by the sample variance or pointwise uncer-
tainty and its correlation. We assume a normal distributionof
the uncertainty field of the initial state, a typical assumption in
weather forecasting, and thus the first two statistical moments
give a complete description of the uncertainty.

The initial Nens-member ensemble fieldxt0
i := xi(t0), i ∈

{1 . . .Nens}, is sampled fromN (xNARR,V):

xt0
i = xNARR + V

1

2 ξi , ξi ∼ N (0, I) , i ∈ {1 . . .Nens} , (1)

where C =
Vij√
ViiVjj

is the correlation matrix andVii is

the variance of variablei. This is equivalent to perturbing the
NARR field withN (0,V). That is,xi = xNARR +N (0,V).
In what follows, we describe the procedure used to estimate
the correlation matrix.

2) Estimation of the Correlation Matrix:In weather models
the correlation structure typically is localized in space.There-
fore, in creating the initial ensemble one needs to estimate
the spatial scales associated with each variable. To obtain
these spatial scales, we build correlation matrices of the
forecast errors using the WRF model. These forecast errors
are estimated by using the method formally known as the
National Meteorological Center (NMC) method, now NCEP
[14], [8], [4], which is based on starting several simulations
staggered in time in such a way that, at any time, two forecasts
are available. In particular, we run a month of day-long
simulations started every twelve hours so that every twelve
hours we have two forecasts, one started one day before and
one started half-a-day before.

The differences between two staggered simulations is de-
noted asdij ∈ R

N×(2×30days), that is, the difference at the
ith point in space between thejth pair of forecasts, where
N is the number of points in space multiplied by the number
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of variables of interest. We can then defineǫi as theith row,
each of which correspond to the deviations for a single point
in space. Therefore, the covariance and correlation matrices
can be approximated by

Vik ≈ ddT =









ǫ0 · ǫ0 ǫ1 · ǫ0 · · · ǫn · ǫ0
ǫ0 · ǫ1 ǫ1 · ǫ1 · · · ǫn · ǫ1
· · · · · · · · · · · ·

ǫ0 · ǫn ǫ1 · ǫn · · · ǫn · ǫn









.

Calculating and storing the entire covariance matrix are
computationally intractable. Consequently, we describe the
correlation distance at each vertical level and for each variable
by two parameters representing the East-West and North-South
directions. This can be efficiently estimated by computing sev-
eral times the correlation along a ray cast into this vertical level
in the East-West direction, fitting a Gaussian to the central
peak, and then averaging among several rays. This approach
captures the difference between East-West and North-South
winds due to the Coriolis effect and the earth rotation, and
also faster and larger scale winds in the upper atmosphere.
However, we assume that correlations and winds are roughly
similar in nature across the continental U.S. This process is
repeated in the vertical direction such that our results arealso
correlated level to level.

To create the perturbations from these length scales, we take
a normally distributed noisy field and apply Gaussian filters
in each direction with appropriate length scales to obtain the
same effect as in (1).

3) Ensemble Propagation through the WRF Model:The
initial distribution is evolved through the NWP model dynam-
ics. The resulting trajectories can then be assembled to obtain
an approximation of the forecast covariance matrix:

xtF

i =Mt0→tF

(

xt0
i

)

+ ηi(t) , i ∈ {1 . . .Nens} , (2)

where xt0
i ∼ N (xNARR,Vt0), ηi ∼ N (0,Q), and

Mt0→tF
(•) represents the evolution of the initial condition

through the WRF model from timet0 to time tF . The initial
condition is perturbed by the additive noiseη that accounts
for the various error sources during the model evolution. An
analysis of the covariance propagation through the model is
given in [21].

In this study, we assume that the numerical model (WRF)
is perfect, that is,η ≡ 0, and given the exact real initial
conditions, the model produces error-free forecasts. For long
prediction windows, this is a strong assumption. In this study,
however, we restrict the forecast windows to no longer than
one day ahead, thus making this assumption reasonable.

4) Accounting for Error Underestimation:In an operational
setting, observations become available periodically and can be
assimilated in the atmospheric state. In order to account for
the new information, the ensemble needs to be recentered on
the new reanalyzed field. In our example, we consider 12-hour
windows between restarts. This simple adjustment corresponds
to a correction in the ensemble expectation. However, the
pointwise error estimates given by the ensemble variance
may be over- or underestimated because of simulation errors
accumulated along the model trajectory due to uncertain data
and incomplete NWP physics. In other words, the ensemble

statistics may diverge from the true statistics. Therefore, the
error levels need to be re-estimated before each initialization.

One sensible approach used to correct the ensemble statis-
tics is as follows. Consider the reanalyzed fieldxNARR as
the true state, for computing corrections purposes only, and
require that this reanalyzed solution be on average within
one standard deviation as given by the ensemble spread. This
approach corresponds to finding a factorγ that inflates the
ensemble spread about its expectation. Let us consider again
the ensemblexi=1...Nens ∈ R

M and the reanalyzed solution
xNARR. Denote byx = 1

Nens

∑Nens

i=1 xi the sample expectation
and byσj =

√

S2
jj , j ∈ {1 . . .M}, the standard deviation,

where S2 = 1
Nens−1

∑Nens

i=1(xi − x)(xi − x)T is the sample
covariance estimation. Then, we have

γ = max

(

1, min

(

meanU,V,T

( |xNARR − x|
σ

)

, 4

))

, (3)

where U , V , and T are the the wind field components
and the temperature, that is, the ensemble variables under
consideration. For this comparison, we consider only the first
five layers, which include grid points located below 300 m.
The new ensemble is then inflated by

xi ← x + γ (xi − x) , i ∈ {1 . . .Nens} . (4)

The factor is bounded between one, because the model error
is underestimated in our case, and four to avoid large jumps in
the solution and destabilize the NWP model. Experimentally,
however, we noticed thatγ ≈ 2, which confirms that this
approach tends to underestimate the uncertainty. This factis
not unexpected because the model error is not considered.

III. U NIT COMMITMENT AND ENERGY DISPATCH

The unit commitment problem consists in finding a cost-
optimal plan of on/off states and power levels for a set of
distributed power generators. This problem normally is solved
by the system operator each time new price information arrives
from the generator owners (market biding). Depending on
the hierarchical structure used (centralized or decentralized),
several variants of the UC problem can be established. Here,
we adopt the traditional centralized approach, in which the
system operator has control over the whole set of generators.
The UC problem uses a forecast of uncertain factors such as
the load or, in our case, of wind power generation. Since the
forecast is not perfect or disturbances might arise, an energy
dispatch problem is solved in closed-loop to correct the power
levels and satisfy the demands.

A. Deterministic Formulation

Many different mathematical formulations of the UC prob-
lem exist. They differ mostly in the constraints used to capture
the dynamic performance of the generators (e.g., ramp limits)
or in the assumed cost models [16]. The UC formulation con-
sidered here is based on the mixed-integer linear programming
(MILP) formulation of Carrion and Arroyo [3]. This has the
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general form

min
pj,k,pj,kνj,k

∑

j∈N

∑

k∈T

c
p
j,k + cu

j,k + cd
j,k (5a)

s.t.
∑

j∈N

pj,k +
∑

j∈Nwind

E[pwind
j,k ] = Dk, k ∈ T (5b)

∑

j∈N

pj,k +
∑

j∈Nwind

E[pwind
j,k ] ≥ Dk + Rk, k ∈ T

(5c)

(6)− (13).

The setsT := {1..T }, N := {1..N}, and Nwind :=
{1..Nwind} represent the time periods, thermal units, and
wind generators, respectively. The demand at each time period
k is denoted byDk while the reserve requirement isRk.
The power output of the thermal unitj at time k is given
by the continuous variablepj,k while the expected value of
the power output of the wind unitj at time k is given by
the fixed parameterE[pwind

j,k ]. The continuous variablepj,k

represents the maximum power output of the thermal unit
j at time k. This variable is introduced in order to model
the spinning reserve requirements which are given by the
differencespj,k − pj,k. The units of all the power outputs are
MW . The on/off status of thermal unitj at time k is given
by the binary variableνj,k.

The production cost for each thermal unit is approximated
by using the linear model [2]

c
p
j,k = ajνj,k + bjpj,k, j ∈ N , k ∈ T , (6)

whereaj and bj are cost coefficients. To model the startup
costcu

j,k we use a staircase cost of the form

Kt
j =

{

ccj if t > tcold
j + DTj

hcj otherwise
, j ∈ N , t = 1, ..., NDj.

whereKt
j is the cost of intervalt of the staircase cost,NDj

is the number of intervals of the staircase cost, andccj and
hcj are cost coefficients. This leads to the following set of
inequality constraints:

cu
j,k ≥ Kt

j

(

νj,k −
t
∑

n=1

νj,k−n

)

,

j ∈ N , k ∈ T , t = 1, ..., NDj , (7a)

cu
j,k ≥ 0, j ∈ N , k ∈ T . (7b)

The formulation of the shutdown cost is given by

cd
j,k ≥ Cj

(

νj,k−1 − νj,k

)

, j ∈ N , k ∈ T , (8a)

cd
j,k ≥ 0, j ∈ N , k ∈ T , (8b)

whereCj is the shutdown cost of unitj. The power output of
each unit at each period must satisfy the bounds

P jνj,k ≤ pj,k ≤ pj,k, j ∈ N , k ∈ T , (9a)

0 ≤ pj,k ≤ P jνj,k, j ∈ N , k ∈ T , (9b)

whereP j andP j are the maximum and minimum capacities
of unit j, respectively. The thermal power outputs must also

satisfy the ramp-up limits

pj,k ≤ pj,k−1 + RUjνj,k−1 + SUj

(

νj,k − νj,k−1

)

+P j(1 − νj,k), j ∈ N , k ∈ T . (10)

The shutdown and ramp-down limits are

pj,k−1 ≤ pj,k + RDjνj,k + SDj

(

νj,k−1 − νj,k

)

+P j(1 − νj,k−1), j ∈ N , k ∈ T . (11)

Here,RDj , RUj, SDj , andSUj are the ramp-down, ramp-up,
shutdown ramp, and startup ramp limits of unitj, respectively.
The minimum up time constraints are

Gj
∑

k=1

(1 − νj,k) = 0, j ∈ N (12a)

k+UTj−1
∑

n=k

νj,n ≥ UTj

(

νj,k − νj,k−1

)

, j ∈ N

k = Gj + 1, . . . , T − UTj + 1 (12b)
T
∑

n=k

(

νj,n − (νj,k − νj,k−1)
)

≥ 0, j ∈ N ,

k = T − UTj + 2, . . . , T , (12c)

where UTj are the minimum up time limits andGj =
min(T, (UTj −U0

j )νj,0) is the number of periods unitj must
be initially ON. The initial state of unitj is denoted byνj,0

and is a fixed parameter. The minimum down time constraints
are formulated as

Lj
∑

k=1

νj,k = 0, j ∈ N (13a)

k+DTj−1
∑

n=k

(1 − νj,n) ≥ DTj

(

νj,k−1 − νj,k

)

, j ∈ N ,

k = Lj + 1, . . . , T −DTj + 1 (13b)
T
∑

n=k

(

1− νj,n − (νj,k−1 − νj,k)
)

≥ 0, j ∈ N ,

k = T −DTj + 2, . . . , T , (13c)

where DTj denote the minimum down-time limits and
Lj = min(T, (DTj − S0

j )(1− νj,0)) is the number of periods
unit j must be initially OFF.

As noted in [3], the above UC formulation requires a
significantly smaller number of binary variables compared to
traditional formulations. For instance, in all the formulations
reviewed in [6], an extra set of variables is required to
identify the units that arestarted at the beginning of each
period. The proposed formulation also yields an accurate
representation of ramping limits and individual contributions
to the spinning reserve requirements. Modeling the ramp limits
in a consistent manner is particularly critical as this simulates
the responsiveness of the thermal units in the presence of short-
term fluctuations of the load and wind power [19]. Note that it
is possible to use this model to simulate the performance of the
energy dispatch problem by fixing the commitment variables
νj,k.
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B. Stochastic Programming Formulation

We extend the previous deterministic formulation by con-
sidering corrective actions on the power outputs of the thermal
generators to account for the uncertainty in the wind power
outputs. The problem can be cast as a two-stage stochastic
programming problem similar to the ones proposed in [2],
[20], [18]. The first stage decision variables are the current
thermal power outputspj,1, pj,1 and the commitment profiles
over the entire planning horizonνj,k. The power outputs are
nonanticipatory (here and now) because it is assumed that
the current wind power outputspwind

j,1 are known and given
by p

wind,true
j,1 . To formulate the second stage, we consider

multiple realizations of the wind power outputspwind
s,j,k ,and

we define scenario-dependent thermal power outputsps,j,k

and ps,j,k with k > 1 (wait and see). Note that we do
not define second-stage scenario-dependent commitment vari-
ables because we wish to keep the problem computationally
tractable. The second-stage power outputs implicitly simulate
the closed-loop response of the energy dispatch problem. The
formulation of the stochastic optimization problem is given by

min
ps,j,k,ps,j,k,νj,k

1

NS

∑

s∈S





∑

j∈N

∑

k∈T

c
p
s,j,k + cu

j,k + cd
j,k





(14a)

s.t.
∑

j∈N

ps,j,k +
∑

j∈Nwind

pwind
s,j,k = Dk, s ∈ S, k ∈ T (14b)

∑

j∈N

ps,j,k +
∑

j∈Nwind

pwind
s,j,k ≥ Dk + Rk, s ∈ S, k ∈ T

(14c)

ps,j,1 = p1,j,1 s ∈ S, j ∈ N (14d)

ps,j,1 = p1,j,1 s ∈ S, j ∈ N (14e)

(6)− (11), s ∈ S
(12)− (13).

The ramp and power limit constraints are defined over each
scenario,s ∈ S where we substitutepj,k ← ps,j,k andpj,k ←
ps,j,k. The nonanticipativity constraints for the power outputs
in the first time step are given by equations (14d) and (14e).
For the known wind power outputs we setpwind

s,j,1 ← p
wind,true
j,1 .

Note that if the stochastic formulation is able to capture
the uncertainty of the wind power accurately, the reserve
requirements can be reduced to less conservative levels or even
be removed. In other words, the reserves already incorporate
some robustness into the UC problem. We have decided to
include the reserves in order to analyze the interplay between
the explicit robustness introduced by the reserves and the
implicit robustness introduced by the stochastic formulation.
This approach has been proposed in [15] and will be used
in Section IV to analyze the effect of increasing levels of
penetration that can be achieved through the stochastic UC
formulation. Load uncertainty has not been considered in
this study in order to isolate the effects of wind power
uncertainty. As in the deterministic formulation, one can solve
a closed-loopstochasticenergy dispatch problem by fixing the
commitment actions.

C. Closed-Loop Implementation

To simulate the closed-loop performance of the power
system, we consider arolling-shrinkinghorizon approach. The
starting rolling time is reset to one each time new price infor-
mation is obtained. This period is assumed to beT = 24 hours.
At the starting rolling time, we assume that the wind power
forecast becomes available from WRF for the next 24 hours.
At this point, the stochastic unit commitment problem is solved
by using the current wind power outputspwind

s,j,ℓ ← p
wind,true
j,ℓ

and the future forecastspwind
s,j,k , k = ℓ + 1, ..., T where ℓ is

the current time step. The solution of this problem gives the
commitment profilesνj,k over the 24-hour rolling horizon. At
each step inside the rolling horizonℓ = 2, ..., T , the horizon is
shrunk by one time stepT ← T − ℓ and the stochastic energy
dispatch is solved over the remaining horizon with the new true
wind power but the same forecast information. Each of these
shrinking horizon problems gives the current power outputs
pj,ℓ andpj,ℓ at current timeℓ. Note that this requires shifting
the nonanticipativity constraints to the corresponding initial
times of the shrinking problems. In addition, it is necessary to
shift the initial state of the thermal units and the corresponding
minimum up- and down-time parametersGj andLj.

D. Inference Analysis

In the above stochastic formulation, the wind power outputs
are assumed to have a probability distributionP. In most
stochastic optimization studies this distribution is assumed
to be known. As seen in Section II, obtaining this distri-
bution is part of the modeling task. Since many different
forecast models (autoregressive, ANN, physics based) can
be used to construct the error distribution, there is not a
unique distribution. From a practical point of view, what we
expect from a distribution is that it is able to encapsulate the
actual realizations of wind power and it has tight confidence
intervals. The encapsulation property ensures robustnessof
the solution (it satisfies the load in each possible scenario)
while tightness ensures that the cost penalty incurred (with
respect to the perfect information cost) is not too strong. As
explained in Section II, we model the wind power distribution
by propagating an assumed Gaussian distribution of the initial
state conditions through the WRF model. Because of the
complexity of the model, we are limited to a single batch of a
few (less than a hundred) weather samples. From a stochastic
optimization point of view, this is an issue because we are not
solving the problem with the full distribution. Nevertheless,
we want to at least get an idea of how sensitive the costs are
to changes in the random information. In addition, we might
want to compute the cost variance or confidence intervals.
Performing inference analysis through sampling techniques
[9] would require resampling many times the initial state
distribution and propagating each sample through the WRF
model. This approach is not practical from a computational
point of view. To avoid this limitation, we next present a
heuristic resampling technique.

1) Weighted Average Sampling:To create new wind speed
time series from the existing WRF realizations, we express a
new realization as a weighted average of the available ones.
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Suppose the WRF model isx(t) =M(t, x(0)), wherex(t) is
the state vector at timet. If we are givenNS samplesxj and
we can writex(0) =

∑

j∈S wjxj(0), the propagation ofx(0)
is x(t) =M(t, x(0)) =M(t,

∑

j∈S wjxj(0)). Assuming the
variance of the samples is small, we can writexj(0) = x̄(0)+
ǫj(0). We can justify the computation of weighted averages of
the time series because

x(t) = M



t, x̄(0) +
∑

j

wjǫj(0)





≈ M(t, x̄(0)) +
∑

j

wj

∂M
∂x

(t, x̄(0))ǫj(0)

=
∑

j

wj

(

M(t, x̄(0)) +
∂M
∂x

(t, x̄(0))ǫj(0)
)

≈
∑

j

wjM
(

t, x̄(0) + ǫj(0)
)

=
∑

j

wjxj(t).

In other words, the weighted average of the time series approx-
imates, to first order, the nonlinear propagation of weighted
samples of the initial conditions. Inspired by kernel density
estimation, the weights are chosen to be Gaussian near the unit
vectors in the standard basis on a hyperplane

∑

j∈S wj = 1
in the w space.

2) Computation of Confidence Intervals:The two-stage
stochastic UC problem with fixed binary variables can be
expressed in the following abstract form :

min
x≥0

cT x +Q(x), s.t.Ax = b. (15)

Here, x are the first-stage decision variables, andQ(x) =
E [Q(x, ξ)] is the second-stage cost. We assume that the
probability distributionP of ξ has finite support; that is,ξ has a
finite number of scenarios{ξ1, ..., ξK} with probabilitiespk ∈
(0, 1). Consequently, we can writeQ(x) = 1

K

∑K

k=1 Q(x, ξk),
where

Q(x, ξk) = min
yk≥0

qT yk, s.t.Tx + Wyk = ξk, k = 1, ..., K.

(16)
Here,yk are the second-stage decision variables, andξk are the
realizations of the wind power outputs.K is a very large num-
ber so it is impractical to solve the stochastic problem exactly.
Therefore, given a fixed number of realizationsNS << K,
we solve the approximate problem,

min
x≥0

cT x +
1

NS

NS
∑

k=1

Q(x, ξk), s.t.Ax = b. (17)

We seek to estimate lower and upper bounds of the true
optimal solutionv∗ (using the entire set ofK realizations) and
their corresponding confidence intervals. A lower bound can
be estimated generatingj = 1, ..., M batches, each of sizeNS

and solve (17) for each batch. If we denote asv̂
j
NS

the optimal
cost of each SAA problem, we can estimate the lower bound
asLNS,M = 1

M

∑M

j=1 v̂
j
NS

. The sample variance estimator is

given bys2
L(M) = 1

M−1

∑M

j=1

(

v̂
j
NS
− LNS,M

)2

. The mean

and variance can be used to construct confidence intervals
of the lower bound. To estimate the upper bound, we pick
a given value for the first-stage variablesx̂ and generate a
new set ofj = 1, ..., M batches of data. We then evaluate
(15), leading tof̂

j
N(x̂). Note that each evaluation involves

the solution of the second-stage problem (16). As before,
we have the meanUNS ,M = 1

M

∑M

j=1 f̂
j
NS

and variance

s2
U (M) = 1

M−1

∑M

j=1

(

f̂
j
NS
− UNS,M

)2

.

IV. I NTEGRATIVE STUDY

In this section we integrate the wind speed forecasts pro-
duced by WRF by following the procedure described in
Section II with the stochastic unit commitment/energy dispatch
formulations described in Section III.

A. Wind Forecast and Uncertainty Quantification

We begin with a description of the weather model setup and
illustrate its performance in a parallel environment that mimics
a real operational setup. We use the WRF model to forecast the
wind speed in a specific region that covers the state of Illinois.
We set up a computational nested domain structure including
a high-resolution sector that covers the target area and two
additional domains of larger coverage but lower resolution.
The parent domains supply the boundary conditions for the
nested ones, and the largest domain has prescribed boundary
conditions from coarser simulations. This setup is illustrated in
Figure 1. A similar setup with one coarse domain is described
in [21].

Grid/Size
#1 - 32 km2

130 × 60

#2 - 6 km2

126 × 121

#3 - 2 km2

202 × 232
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Fig. 1. Size and spatial resolution of the computational domain.

To simulate realistic conditions, we generate six ensemble
data sets, each containing the predicted wind speed for Illinois
region corresponding to domain # 3 (the innermost) in Figure
1. Each ensemble hasNens = 30 members. The data is sampled
every 10 minutes, and each ensemble is evolved one day ahead.
The starting time of the experimentt0 corresponds to June1st,
2006, 6:00 PM CT (local time), with each data set restarted
from the reanalyzed solution at timet0 +(k− 1)× (12 hours)
with k = 1, . . . , 6. In other words, each data set is started at
the revalidation time with 12-hour increments.

1) Validation Using Wind and Temperature Data Measure-
ments: We validate the WRF model against observations
at several weather stations throughout Illinois. The weather
station observations were obtained from the National Climatic
Data Center (NCDC), and their locations are illustrated in
Figure 2.b.

In Figure 3 we show the wind speed (±2σ) and temperature
(±3σ) predictions and measurements for Peru and Chicago,
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IL, identified as rotated triangles in Figure 2.b. Each ensemble
evolves for 24 hours and new ones are started every 12 hours;
therefore, the last half of each forecast overlaps with a more
recent one. In our illustrations we show the most recent results
on top.
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a) Wind farm location b) Weather stations

Fig. 2. Windmill farms and weather station (triangles) locations in Illinois.

We remark that the wind speed measurements obtained from
NCDC are given in miles per hour rounded to the nearest
integer. Doing so has the unfortunate effect of diminishing
the wind variability and yielding more pessimistic than real
validation results. The temperature measurements are also
rounded, but this effect is less visible. In this test case,
however, the temperature is relatively easier to predict whereas
the wind typically has a wider variability and is much more
difficult to predict accurately. This point is enforced by the
correlogram for the temperature and wind speed at Peru, IL
shown in Figure 6. The uncertainty intervals as given by WRF
capture the trends very well, with few exceptions. Similar
results are obtained at the other weather stations. These results
show that WRF can be used to make accurate wind predictions
and provide confidence intervals.
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Fig. 3. Wind speed (±2σ) and temperature (±3σ) predictions and mea-
surements (o) for Peru and Chicago, IL. The vertical dashed lines denote the
beginning of a new 24-hour prediction window; different colors are used to
indicate ensembles started at different times.

2) Validation at Wind Farm Locations in Illinois:We
present validation results at 12 active wind-farms in the state of
Illinois. Their locations are displayed in Figure 2. Currently,
the power produced by wind turbines depends on the wind
speed at elevations of about 40-120 meters. The wind speed
fields at these heights can be extracted from WRF. Unfortu-
nately, the NCDC data available for validation is reported only
at 10 meters. Obtaining wind speed data at higher altitudes
requires access to proprietary databases of operational wind
farms. Consequently, we provide validation results only at10
meters.

The wind speed fields at 10 and 100 meters above the
ground for three consecutive days of June 2006 are presented
in Figures 4 and 5, respectively. The order of the windows
goes from left to right and coincide with the wind-farm
location numbering shown in Figure 2. From Figure 4, we
note that the WRF realizations are able to capture the general
trends of the actual observations. In addition, they are able
to encapsulate the observations. Note, however, that the wind
speed is relatively low at this height. The maximum average is
around 6-7 meters per second. From Figure 5 we see that the
wind speeds increase significantly at 100 meters, reaching a
maximum average of around 10 meters per second. Note also
that the uncertainty levels increase at this height as a result of
the larger range and variability. This increase is also expected
because most of the wind speed data assimilated in WRF is
near ground level.
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Fig. 4. Wind speed realizations for 12 wind farm locations inIllinois at
10 m and observations (dots) at nearest meteorological stations. Vertical lines
represent beginning of day (12:00 AM).

In Figure 7 we show the spatial correlations of the wind
speed for wind farm #8 on June 5, 1:50 AM, as inferred from
the 30-member WRF ensemble simulation. In this analysis, we
have observed that the wind speed is highly correlated over
a wide geographical region and that it has a nontrivial spatial
structure. This observation is confirmed by comparing Figures
9 and 2. Here, we can see that the wind speed realizations
for wind farms #2, 3, 4, and 8 are strongly correlated, as
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Fig. 5. Wind speed realizations for 12 wind farm locations inIllinois at 100
m. Vertical lines represent beginning of day (12:00 AM).

predicted by the correlation mapping. The correlation informa-
tion is highly valuable, because it can augment the temporal
uncertainty analysis by identifying the locations that arelikely
to experience a similar behavior. This can be used, for instance,
to identify faulty sensors at certain locations or to aggregate
the performance of multiple turbines in a consistent manner.
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Fig. 6. Correlogram for the wind and
temperature measurements at Peru,
IL.
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the wind field for wind farm #8 on
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The circle markers denote the other
wind farms in Illinois.

3) Implementation Considerations:WRF is an open-source
weather and climate model available to the research commu-
nity. In this study we used the latest version available at the
time of preparing this manuscript; that is, version 3.1 [17]. In
what follows we provide some implementation considerations
arising during the execution of WRF in an operational setting.

The ensemble approach taken for estimating the uncertainty
in the weather system is highly parallelizable because each
scenario evolves independently through WRF, once the initial
ensemble has been generated. The most expensive compu-
tational element is the evolution of each member through
the WRF system. We therefore consider a two-level parallel
implementation scheme. The first level is a coarse-grained
task decomposition represented by each individual member.
A secondary finer-grain level consists in the parallelization

of each individual member. This approach yields a highly
scalable solution.

The simulations were performed on the Jazz Linux cluster
at Argonne National laboratory. Jazz has 350 compute nodes,
each with a 2.4 GHz Pentium Xeon with 1.5 GB of RAM. The
cluster uses Myrinet 2000 and Ethernet for interconnect and
has 20 TB of on-line storage in PVFS and GFS file systems.
Our actual running times for a single 24-hour job on Jazz are
illustrated in Figure 8. We note that solution times can varyby
a factor of 2 throughout the day. Consequently, to make this
run a one hour of real time, one would need on the order of 500
CPUs or cores of a similar power. Additional computational
power may be required to compensate for increasing cost of
disk access.

CPUs Time
[hr]

4 50
8 28
16 17
32 10

10
0

10
1

10
2

10
4

10
5

CPUs

W
al

l−
tim

e 
[s

ec
]

 

 

Scalability on Jazz

Linear Scalability

Fig. 8. Scalability of WRF on the computer cluster Jazz for 24hours
(extrapolation based on 2-hour runs).

B. Economic Study Unit Commitment/Energy Dispatch

Because of the lack of detailed design data of thermal and
wind power units in the open literature, we have constructedan
artificial simulation study. We first describe the thermal and
wind power assumptions used and then discuss our results
from the simulation.

1) Power System Description:The thermal power system
specifications used in this work are based on those reported
in [3]. The system contains a total of 10 thermal generators
with a total installed capacity of 1662 MW. The peak demand
is 1326 MW. The ramp limits of the units are not reported,
so we have assumed them to be 50% of the corresponding
maximum capacity. The reserve requirements are assumed to
be 10% of the demand. To simulate increasing level of wind
power adoption, we increase the number of wind turbines at
each of the 12 wind farm locations in Illinois.

2) Results:To generate wind power forecasts, we propagate
the real wind speed observations and the realizations from
WRF at a height of10 metersthrough a typical wind power
curve with a maximum capacity of 1.5 MW. The nominal
curve has a cut-in speed of 3 meters per second and reaches
the rated capacity at 12 meters per second. The wind speed
observations, forecast and ensembles used are summarized
in Figure 4. As previously mentioned, we used the height
of 10 meters because the NCDC data used for validation
is only reported at this level. In addition, most wind power
data is proprietary and difficult to obtain. As expected, the
wind speeds are relatively low at this level, thus leading to
small power outputs. Instead of using the wind speed WRF
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forecasts at 100 meters, we have kept the 10 meters WRF
forecasts and observations and mapped these using a shifted
power curve obtained by displacing the nominal cut-in speed
from 3 to 2 meters per second. With this, the rated capacity is
reached at around 11 meters per second. This strategy allowed
more realistic validation results for wind power compared
to linear interpolation of the wind speed observations. The
resulting artificial wind power realizations and observations
are presented in Figure 9. The order of the windows goes
from left to right and coincides with the wind farm location
numbering shown in Figure 2. The wind power distribution
is clearly affected by the nonlinear structure of the power
curve. The WRF realizations are able to encapsulate the actual
power observations. The largest differences are observed at
the beginning of the third day. Unfortunately, the rounding
of the NCDC wind speed data significantly increases the
errors when mapped through he power curve. Nevertheless, in
general, the overall trends are captured fairly accurately. We
emphasize that the uncertainty structure of the wind power
forecasts strongly depends on the particular characteristics of
the installed system.
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Fig. 9. Wind power realizations for 12 wind farm locations inIllinois at
10 m and observations (dots) at nearest meteorological stations. Vertical lines
represent beginning of day (12:00 am).

We have run the closed-loop UC/ED system assuming a
rolling horizon and a forecast frequency of 24 hours. The
energy dispatch problem runs every hour. A total of 30
WRF realizations are used to solve the stochastic problem.
The resulting MILP problems are implemented in AMPL
and are solved with the CBC solver from the COIN-OR
repository. The MILP contains 38,651 variables from which
240 are binary, 783 equality constraints, and 40,747 inequality
constraints. CBC is used with its default algorithm settings but
in multi-thread mode with four threads. The average solution
time for the full UC problem in a quad-core Intel processor
running Linux is about 9 minutes in cold-start mode. The
solution time of the energy dispatch problem is less than 10
seconds.

The results for the 20% penetration study are presented in

Figures 10-12. In Figure 10, we present the optimal commit-
ment profiles for the closed-loop optimizer and for the perfect
information problem. As can be seen, the profiles are similar
but the generators tend to be ON more with the stochastic
policies. We note that the optimal cost of the stochastic
strategy over three days of operation is only about 1% larger
than with the perfect information strategy. In Figure 11, we
present the policies for the thermal power levels. We notice
that the sensitivity of the power levels of some units to the
uncertainty of the wind power is very small. Generators #2
and #5 are the most sensitive, while generators #3 and #4
exhibit no sensitivity. We have found that the sensitivity levels
depend strongly on the design characteristics and prices ofthe
generators.

We also performed an inference analysis using the weight-
ing sampling strategy of Section III-D1 for the first day of
operation usingM = 30 different batches. The upper bound
mean was found to beUNS,M = $474, 064 with variance
s2

U (M) = 1, 082$2. The lower bound mean was found to be
LNS,M = $474, 317 with variances2

L(M) = 1, 656$2. Both
variances are less than0.25% of the mean cost. This value
indicates that 30 WRF realizations are sufficient to estimate
the optimal cost. We have also found that updating the WRF
forecast every 12 hours instead of every 24 hours does not
bring important economic benefits. The explanation resets with
the forecast trends presented Figure 3. Note that the forecasts
are not improved significantly at the middle of the day, perhaps
because measurements assimilated during the day are not as
informative as those assimilated during night, where the wind
currents tend to be stronger.

In Figure 12 we present the profiles of total aggregated
demand, thermal power, and wind power. The thin gray lines
represent the scenarios foreseen by the stochastic optimizer at
the beginning of each day. As can be seen, the realizations are
able to encapsulate the actual closed-loop profiles (solid lines)
during the first two days. As a result, the optimizer is always
able to satisfy the load, even for an adoption level of20%. In
the third day, however, we see a significant mismatch between
the forecasted wind power and the realized one in the first 12
hours of operation. This directly translates to a mismatch in
the planned closed-loop behavior of the thermal power levels.
In this case, the reserves are sufficient to satisfy the load.
Nevertheless, this result is important to illustrate that modeling
the probability distribution in an adequate manner is critical.
This effect could potentially be ameliorated by inflating the
initial conditions of the WRF ensembles. However, this effect
cannot be predicteda priori, and computational limitations
preclude running the WRF model more frequently to capture
this mismatch. This situation suggests that a higher frequency
forecaster (e.g., autoregressive model) or an artificial variance
corrector should be added to the system. How to connect this
short-term forecaster with WRF is still not clear.

We found that a purely deterministic optimizer (using only
the WRF forecast mean) is not able to sustain adoption levels
of more than10% even with the allocated reserves. We also
observed that increasing the adoption levels increases thestart-
up and shutdown costs, but these are negligible (on the order
of $10,000) with respect to the total production costs.
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Fig. 10. Closed-loop commitment profiles for thermal units.Solid thin line
is optimal profile (with perfect information); solid thick line is stochastic UC
solution.
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Fig. 11. Closed-loop thermal profiles for thermal units. Solid thin line is
optimal profile (with perfect information), solid thick line is stochastic UC
solution, and thick gray lines are planned scenarios at the beginning of each
day.

V. CONCLUSIONS ANDFUTURE WORK

We presented a computational framework for the integra-
tion of the state-of-the-art Weather Research and Forecasting
(WRF) model in stochastic unit commitment/energy dispatch
formulations that account for wind power uncertainty. We
extended the WRF model with a sampling technique imple-
mented in a distributed-memory parallel computing architec-
ture. We have used the uncertainty information in a stochastic
unit commitment formulation to analyze the impacts of wind
power uncertainty on the system’s economic performance. In
addition, we have developed a weighting-average resampling
strategy that avoids expensive WRF simulations to perform
inference analysis. Our numerical experiments indicate that
it is relatively costly to generate forecast and uncertainty
information from WRF at a lower frequency than 12 hours. We
have not accounted for the cost of assimilating observations
in the model. However, given the power of current compute
clusters, this does not seem to be a limiting factor.

Our simulated stochastic commitment study indicates that
using WRF forecasts and uncertainty information is critical
to achieve high adoption levels with minimum reserves. In
this study, however, we have not found significant benefit of
updating the WRF forecasts every 12 hours, as opposed to 24
hours. The benefits of updating the forecast more frequentlyis
an issue of ongoing research. One must keep in mind, however,
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Fig. 12. Closed-loop total power profiles obtained with stochastic UC
formulation. Top thick line is demand profile, medium thick line is the
implemented thermal profile, gray lines are planned realizations at beginning
of each day, bottom thick line is actual total wind power, andthe adjacent
gray lines are forecasted profiles.

though the high computational cost attached to such frequent
updates. Our study illustrates a real operational setting,and
points to several issues and limitations that are not present in
idealized experiments using artificial uncertainty information.
Our inference strategy shows that a moderate (N=30) number
of WRF realizations is sufficient to produce a good estimate
of the optimal cost.

As future work, we are interested in developing techniques
to generate forecasts at a higher resolution. In addition, we
are interesting in generating wind-power forecast models by
fusing WRF wind speed forecasts and operational wind-power
data. In addition, we are interested in exploring real-timeopti-
mization strategies to reduce the on-line computational times.
We are also interested in exploring the interplay between wind
power uncertainty and the power system design and price
characteristics. We will extend our formulation to consider
detailed network constraints where the effects of wind power
are more pronounced.
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